Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Rep ; 38(10): 110434, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1729611

ABSTRACT

Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.


Subject(s)
DEAD Box Protein 58 , Interferon Type I , RNA Helicases , RNA, Viral , Receptors, Immunologic , Zika Virus Infection , Zika Virus , COVID-19 , DEAD Box Protein 58/immunology , Humans , Immunity, Innate , Interferon Type I/immunology , RNA Helicases/immunology , Receptors, Immunologic/immunology , SARS-CoV-2 , Tripartite Motif Proteins , Zika Virus/genetics , Zika Virus Infection/immunology
2.
Viruses ; 13(3)2021 02 26.
Article in English | MEDLINE | ID: covidwho-1115433

ABSTRACT

Ubiquitination of proteins is a post-translational modification process with many different cellular functions, including protein stability, immune signaling, antiviral functions and virus replication. While ubiquitination of viral proteins can be used by the host as a defense mechanism by destroying the incoming pathogen, viruses have adapted to take advantage of this cellular process. The ubiquitin system can be hijacked by viruses to enhance various steps of the replication cycle and increase pathogenesis. Emerging viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses like Zika and dengue, as well as highly pathogenic viruses like Ebola and Nipah, have the ability to directly use the ubiquitination process to enhance their viral-replication cycle, and evade immune responses. Some of these mechanisms are conserved among different virus families, especially early during virus entry, providing an opportunity to develop broad-spectrum antivirals. Here, we discuss the mechanisms used by emergent viruses to exploit the host ubiquitin system, with the main focus on the role of ubiquitin in enhancing virus replication.


Subject(s)
Ubiquitin/metabolism , Virus Diseases/metabolism , Virus Replication , Viruses/metabolism , Immune Evasion , Ubiquitination , Viral Proteins/metabolism , Virus Assembly , Virus Diseases/immunology , Virus Diseases/virology , Virus Internalization , Virus Release , Viruses/classification , Viruses/immunology , Viruses/pathogenicity
3.
Antiviral Res ; 182: 104874, 2020 10.
Article in English | MEDLINE | ID: covidwho-891945

ABSTRACT

Based on genome-scale loss-of-function screens we discovered that Topoisomerase III-ß (TOP3B), a human topoisomerase that acts on DNA and RNA, is required for yellow fever virus and dengue virus-2 replication. Remarkably, we found that TOP3B is required for efficient replication of all positive-sense-single stranded RNA viruses tested, including SARS-CoV-2. While there are no drugs that specifically inhibit this topoisomerase, we posit that TOP3B is an attractive anti-viral target.


Subject(s)
Betacoronavirus/physiology , DNA Topoisomerases, Type I/metabolism , RNA Viruses/metabolism , Virus Replication/physiology , Cell Line , Dengue Virus/physiology , Ebolavirus/physiology , Gene Knockout Techniques , Humans , Influenza A virus/physiology , SARS-CoV-2 , Yellow fever virus/physiology , Zika Virus/physiology
4.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: covidwho-772280

ABSTRACT

SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV. Our results indicate that while SARS-CoV-2 maintains similar viral replication to SARS-CoV, the novel CoV is much more sensitive to IFN-I. In Vero E6 and in Calu3 cells, SARS-CoV-2 is substantially attenuated in the context of IFN-I pretreatment, whereas SARS-CoV is not. In line with these findings, SARS-CoV-2 fails to counteract phosphorylation of STAT1 and expression of ISG proteins, while SARS-CoV is able to suppress both. Comparing SARS-CoV-2 and influenza A virus in human airway epithelial cultures, we observe the absence of IFN-I stimulation by SARS-CoV-2 alone but detect the failure to counteract STAT1 phosphorylation upon IFN-I pretreatment, resulting in near ablation of SARS-CoV-2 infection. Next, we evaluated IFN-I treatment postinfection and found that SARS-CoV-2 was sensitive even after establishing infection. Finally, we examined homology between SARS-CoV and SARS-CoV-2 in viral proteins shown to be interferon antagonists. The absence of an equivalent open reading frame 3b (ORF3b) and genetic differences versus ORF6 suggest that the two key IFN-I antagonists may not maintain equivalent function in SARS-CoV-2. Together, the results identify key differences in susceptibility to IFN-I responses between SARS-CoV and SARS-CoV-2 that may help inform disease progression, treatment options, and animal model development.IMPORTANCE With the ongoing outbreak of COVID-19, differences between SARS-CoV-2 and the original SARS-CoV could be leveraged to inform disease progression and eventual treatment options. In addition, these findings could have key implications for animal model development as well as further research into how SARS-CoV-2 modulates the type I IFN response early during infection.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Interferon Type I/pharmacology , Interferon-alpha/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Animals , Antiviral Agents/antagonists & inhibitors , Antiviral Agents/metabolism , Betacoronavirus/immunology , Betacoronavirus/physiology , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Humans , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Interferon Type I/metabolism , Interferon-alpha/antagonists & inhibitors , Interferon-alpha/immunology , Interferon-alpha/metabolism , Phosphorylation , Recombinant Proteins/pharmacology , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2 , STAT1 Transcription Factor/metabolism , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL